Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Temperature dependence of photoluminescence for site-controlled InAs/GaAs quantum dot chains

Identifieur interne : 000378 ( Main/Repository ); précédent : 000377; suivant : 000379

Temperature dependence of photoluminescence for site-controlled InAs/GaAs quantum dot chains

Auteurs : RBID : Pascal:13-0288366

Descripteurs français

English descriptors

Abstract

We study the temperature dependence of the photoluminescence (PL) from InAs quantum dot chains (QDC) grown by MBE on [011]- and [011]-oriented UV nanoimprint lithography processed groove patterns. We observe an increase of PL intensity from the [011]-oriented QDCs within the temperature range from 20-70 K, which is attributed to thermally activated carrier transport from small quantum dots accumulated on the sidewalls of the [011]-oriented grooves to the quantum dots at the bottom of the groove. We utilize a rate equation model to quantitatively analyze the carrier transfer mechanism. Furthermore, we show that the defect related carrier loss mechanism, which accounts for weak PL quenching at low temperatures, is similar for QDCs and self-assembled quantum dots (SAQD) that were used as a reference. The carrier loss mechanism that causes the rapid quenching of SAQD PL at high temperatures is identified as exciton escape, while for the QDCs it is either single carrier escape or escape of uncorrelated electron-hole pairs. This result reveals a significant difference in the carrier dynamics of site-controlled QDCs and SAQDs.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0288366

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Temperature dependence of photoluminescence for site-controlled InAs/GaAs quantum dot chains</title>
<author>
<name sortKey="Hakkarainen, T V" uniqKey="Hakkarainen T">T. V. Hakkarainen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Optoelectronics Research Centre, Tampere University of Technology, Korkeakoulunkatu 3</s1>
<s2>33720 Tampere</s2>
<s3>FIN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Finlande</country>
<wicri:noRegion>33720 Tampere</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schramm, A" uniqKey="Schramm A">A. Schramm</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Optoelectronics Research Centre, Tampere University of Technology, Korkeakoulunkatu 3</s1>
<s2>33720 Tampere</s2>
<s3>FIN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Finlande</country>
<wicri:noRegion>33720 Tampere</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Luna, E" uniqKey="Luna E">E. Luna</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Paul-Drude-Institut für Festkörperelektronik</s1>
<s2>Berlin</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tommila, J" uniqKey="Tommila J">J. Tommila</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Optoelectronics Research Centre, Tampere University of Technology, Korkeakoulunkatu 3</s1>
<s2>33720 Tampere</s2>
<s3>FIN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Finlande</country>
<wicri:noRegion>33720 Tampere</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Guina, M" uniqKey="Guina M">M. Guina</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Optoelectronics Research Centre, Tampere University of Technology, Korkeakoulunkatu 3</s1>
<s2>33720 Tampere</s2>
<s3>FIN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Finlande</country>
<wicri:noRegion>33720 Tampere</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0288366</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0288366 INIST</idno>
<idno type="RBID">Pascal:13-0288366</idno>
<idno type="wicri:Area/Main/Corpus">000793</idno>
<idno type="wicri:Area/Main/Repository">000378</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-0248</idno>
<title level="j" type="abbreviated">J. cryst. growth</title>
<title level="j" type="main">Journal of crystal growth</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Electron hole pair</term>
<term>Excitons</term>
<term>Gallium arsenides</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Molecular beam epitaxy</term>
<term>Nanoimprint lithography</term>
<term>Nanomaterial synthesis</term>
<term>Nanostructured materials</term>
<term>Nanostructures</term>
<term>Photoluminescence</term>
<term>Quantum dots</term>
<term>Quenching</term>
<term>Rate equation</term>
<term>Temperature dependence</term>
<term>Ultraviolet lithography</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Dépendance température</term>
<term>Photoluminescence</term>
<term>Arséniure d'indium</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Arséniure de gallium</term>
<term>Point quantique</term>
<term>Nanomatériau</term>
<term>Epitaxie jet moléculaire</term>
<term>Lithographie UV</term>
<term>Lithographie nanoimpression</term>
<term>Synthèse nanomatériau</term>
<term>Equation vitesse</term>
<term>Trempe</term>
<term>Exciton</term>
<term>Paire électron trou</term>
<term>Nanostructure</term>
<term>InAs</term>
<term>GaAs</term>
<term>7855</term>
<term>8107T</term>
<term>8107</term>
<term>8115H</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We study the temperature dependence of the photoluminescence (PL) from InAs quantum dot chains (QDC) grown by MBE on [011]- and [011]-oriented UV nanoimprint lithography processed groove patterns. We observe an increase of PL intensity from the [011]-oriented QDCs within the temperature range from 20-70 K, which is attributed to thermally activated carrier transport from small quantum dots accumulated on the sidewalls of the [011]-oriented grooves to the quantum dots at the bottom of the groove. We utilize a rate equation model to quantitatively analyze the carrier transfer mechanism. Furthermore, we show that the defect related carrier loss mechanism, which accounts for weak PL quenching at low temperatures, is similar for QDCs and self-assembled quantum dots (SAQD) that were used as a reference. The carrier loss mechanism that causes the rapid quenching of SAQD PL at high temperatures is identified as exciton escape, while for the QDCs it is either single carrier escape or escape of uncorrelated electron-hole pairs. This result reveals a significant difference in the carrier dynamics of site-controlled QDCs and SAQDs.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-0248</s0>
</fA01>
<fA02 i1="01">
<s0>JCRGAE</s0>
</fA02>
<fA03 i2="1">
<s0>J. cryst. growth</s0>
</fA03>
<fA05>
<s2>378</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Temperature dependence of photoluminescence for site-controlled InAs/GaAs quantum dot chains</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>The 17th International Conference on Molecular Beam Epitaxy</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>HAKKARAINEN (T. V.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SCHRAMM (A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LUNA (E.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>TOMMILA (J.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>GUINA (M.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>AKIMOTO (Katzuhiro)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SUEMASU (Takashi)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>OKUMURA (Hajime)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Optoelectronics Research Centre, Tampere University of Technology, Korkeakoulunkatu 3</s1>
<s2>33720 Tampere</s2>
<s3>FIN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Paul-Drude-Institut für Festkörperelektronik</s1>
<s2>Berlin</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>University of Tsukuba</s1>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>470-474</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13507</s2>
<s5>354000506550351160</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0288366</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of crystal growth</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We study the temperature dependence of the photoluminescence (PL) from InAs quantum dot chains (QDC) grown by MBE on [011]- and [011]-oriented UV nanoimprint lithography processed groove patterns. We observe an increase of PL intensity from the [011]-oriented QDCs within the temperature range from 20-70 K, which is attributed to thermally activated carrier transport from small quantum dots accumulated on the sidewalls of the [011]-oriented grooves to the quantum dots at the bottom of the groove. We utilize a rate equation model to quantitatively analyze the carrier transfer mechanism. Furthermore, we show that the defect related carrier loss mechanism, which accounts for weak PL quenching at low temperatures, is similar for QDCs and self-assembled quantum dots (SAQD) that were used as a reference. The carrier loss mechanism that causes the rapid quenching of SAQD PL at high temperatures is identified as exciton escape, while for the QDCs it is either single carrier escape or escape of uncorrelated electron-hole pairs. This result reveals a significant difference in the carrier dynamics of site-controlled QDCs and SAQDs.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H55</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07T</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07Z</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A15H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Lithographie UV</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Ultraviolet lithography</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Lithographie nanoimpression</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Nanoimprint lithography</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Litografía nanoimpresión</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Synthèse nanomatériau</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Nanomaterial synthesis</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Síntesis nanomaterial</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Equation vitesse</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Rate equation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Ecuación velocidad</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Trempe</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Quenching</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Exciton</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Excitons</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Paire électron trou</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Electron hole pair</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Par electrón hueco</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Nanostructure</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Nanostructures</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>7855</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8107T</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>8107</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8115H</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>273</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>MBE2012 International Conference on Molecular Beam Epitaxy</s1>
<s2>17</s2>
<s3>Nara JPN</s3>
<s4>2012-09-23</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000378 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000378 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0288366
   |texte=   Temperature dependence of photoluminescence for site-controlled InAs/GaAs quantum dot chains
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024